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FOREWORD

This monograph was produced at Virginia Polytechnic Institute in a pilot
program administered by Oklahoma State University under contract to the NASA Office
of Technology Utilization. The program was organized to determine the feasibility
of presenting the results of recent research in NASA Laboratories, and under NASA
contract, in an educational format suitable as supplementary material in classwork
at engineering colleges. The monograph may result from editing single technical
reports or synthesizing several technical reports resulting from NASA's research
efforts.

Following the preparation of the monographs, the program includes their evalu-
ation as educational material in a number of universities throughout the country.
The results of these individual evaluations in the classroom situation will be used
to help determine if this procedure is a satisfactory way of speeding research

results into engineering education.

ABSTRACT

This monograph discusses a technique to generate a control signal which forces
the state of a nonlinear plant to be close to the state of a reference model. The
method is suitable for a broad class of nonlinear planta.' Special emphasis is

placed on the time of response due to perturbatipns from equilibrium.
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7.

8.

Educational level of the monograph - Senior or beginning graduate level.

Prerequisite course material - Some introductory modern control theory including

the concepts of state-space modeling.
Estimated lecture time required - One hour.
Technical significance of the monograph -~ The material presented in this mono-
graph illustrates the power and versatility of Liapunov's Second Method. Very
little material is évailable on the Second Method applied to a design problem.
The technique described herein is conceptually a very broad solution to the
controller design problem. The main difficulty seems to be the cost of imple-
menting the design criteria as compared with other types of solutions such as
the "on-line computer' controller.
New concepts or unusual concepts illustrated - This technique represents an
extension to ideas previously developed in reference 3.
How monograph can best be used -
Following the presentation of material, the class may benefit from either
(a) Synthesizing a controller for a plant containing a type of non-
linearity different than that of the example, or
(b) Comparing the controller developed in the example with that
developed by another technique.
Other literature of interest to this subject is listed in the bibliography.
Note to Instructor: All uncolored pages of the instructors monograph are in

the copies intended for student use.
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CONTROLLER DESIGN FOR NONLINEAR AND TIME-VARYING PLANTS

Introduction

Prior to the last decade the theory and techniques of control engineers were
focused primarily on the design of controllers, or regulators, for systems (plants)
which could be described by linear differential equations. As a result the con-
troller's function was fulfilled only over a certain range of operation since all
physical plants are nonlinear to some degree. In the sense that the plant is
amenable to being repfesented by a linear model there is conceptually no difficulty
in obtaining the dynamic performance of the system. However, to meet the demands
of modern industrial automation as well as those of military and space systems,
the limitation of a linear plant has been removed from many theoretiéal approaches,
thus increasing the complexity of the controller design.

This monograph presents an approach to the controller design problem for the
case where the type of nonlinearity of the plant is known beforehand. The technique
is an application of Liapunov's Second Method, and although a great deal has been
written concerning Liapunov's Second Method with respect to stability problems,
there are notably few cases in which this powerful method has been applied to engi-

neering design problems.

Liapunov's Second Method

The second or direct method of Liapunov is concerned with determining the
stability of a differential system without having to solve the equations. The
conceptual technique applies to systems that may be forced, nonlinear, time-varying
and/or stochastic in nature. The method involves the construction (by any means
possible) of a scalar-valued function of the state-variables of the system, which

is analogous to the total energy of the system. If the time derivative of this




"energy" function is negative for each value of the state-vector, then the associated
equilibrium of the system is stable, (For a rigorous treatment of this material

the reader is referred to Chapter 7 of Reference 1.)

Problem Statement: (See Figure 1)

Given a non~linear plant whose (state-variable) description is known (the
allowable forms of the nonlinearity will be made explicit in the development which
follows) and a model reference or idealized system which will be_assumed to be both

linear and passive.

To synthesize a controller which generates a signal to force the plant state

toward the model state with minimum convergence time.

C Xd u X
3 MODEL ——>1 CONTROLLER —— PLANT
Command Plant
Signal Output

Fig. 1. System configuration,

Synthesis Technique:

By assumption the plant may be characterized by the state-variable (vector)

differential equation

x = i(i’ﬂ»é"°-'- .s‘_‘é;(nzt) (1)
where

u is the control signal vector and

x is the state-vector of the plant



u as arguments of f allows for the possibility
of plant "zeros". Certain restrictions on f will be made as an outcome of the

technique.

Also by assumption the ideal system behavior may be described by
+B r (2)

where
X, is the state vector of the reference model,
r is the command input vector and

A0 and Bo are (n x n) constant matrices.
From Equations (1) and (2) an error vector

- x (3)
exists which must be reduced to zero by a suitable control signal u. By subtracting
Equation (1) from Equation (2):

_é_ = —_):{. = A

Xy o Xg ¥ By X

=Aog+Ao_}g-f_(3c_?_g,t)+Bol:_ (4)

Equation (4) is, then, a differential equation for the error vector and Liapunov's
Second Method, which deals with the stability of differential systems, may be
directed toward maintaining the "equilibrium", e = o, asymptotically stable in the
large. In other words, it is desired to develop a practical method of generating
the control vector u such that for any non-zero value of the error e, the system
will return to the equilibrium state, e = .

A convenient starting point in the synthesis of the control signal u is the

construction of a Liapunov function for the differential system in Equation (4).



V) =e' Pe (5)

where P 1s a symmetric matrix to be determined.

Taking the derivative of V with respect to time

Ve =¢ Pe+e Pe

Substituting from equation (4):

. T
Ve =l aT+x AT - T+ T8 Hpe

= "o o -~ = "o =

T
+e P (A e+A X -f£+B_ r)
Y T T
V(e) = e (Ao P+PAo)g+2M (6)
where
T

M=e PAX-f(x,u, t)+Bcr

Thus the equilibrium, e = o, will be asymptotically stable. Consequently V will
be a Liapunov function for the error system described in Equation (4) 1f

1, (AOT P+P Ao) = -Q is a negative definite matrix, and

2. The control signal u can be chosen to make the matrix M of Equation

(6) non-positive.

Condition 1 can be met by a proper choice of P since Ao is the state matrix of a
stable system by hypothesis. The second condition can be met provided that £
satisfies certain requirements and its form and bounds are known. The restrictions
on the type of nonlinearities to be allowed for the functions f are implicit in the

method of choosing u such that M be a non-positive matrix. For the case where f



is acta procedure illustrated below, requires only that the

[

coefficient of the highest derivative of u be of one sign and non-vanishing.

Example:

To clarify the procedure of implementing condition 2 consider a simple

second-order nonlinear time-varying plant described by the equation (see Figure 2)
i+a(@@’+kbx=ku+kbr @2

Thus, the non-linearity is square-law damping. The state-space characterization

of Equation (7) is found by letting X =X and X, = X
X x
. d 1 2
=3 X, = £&u ) = ~a(t) x22 - kb L3 +ku+kbr (7"
Assuming that the reference model equation is
X, +ta Xy + koxd = kor (8)

The error equation becomes (subtracting Equation (7) from Equation (8) ):

¢+ (a -ax)e+ (k -kble= (k - kb)r - ku (9)
Letting x, = x, and x, = x, for the state model of Equation (8):
dl d d2 d
0 1 0
X, = x, + r (8")
— K -a | S K
o 0 o

By identifying matrices A0 and Bo from Equation (8'), a substitution may be made

into Equation (6). Choosing Q diagonal:

. . 2 2
V(e) = V(el, ez) = qp18 + 9,8, + 2M (10)
where
0 1 X f 0
M=2|E E n_n +
12 -k -a X f ’
o] o 2 2 kpr
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€, = (e;py; + e9pyy
and
£y = (epy + €yPy))
so that
M=-2kE, k°;kb (x-r)+-a-1%;c--a-i§£l}.c2+u

Therefore, if a control signal u(t) can be generated to be instantaneously equal to

u = {[k—-;—lf—‘] [r-x] + [%—][}1] + %2 [ﬁ] max} sign £,

then criterion 2 concerning Equation (6) will be satisfied. The block diagram for
such a controller is incorporated in Figure 2.

Figure 3 illustrates the error vs. time of the system of Figure 2 where r(t) is the
unit step. The error is seen to decay. In fact the error is never greater than

5% of the model reference.

Convergence Time:

An estimate of the convergence time is given by the parameter

-V(e)
y s & #0 (12)

Therefore,
V(e) < - nV(e)
or

V(o) < v e ME ) (13)

where

v =V(_¢3_)‘
t =t
(o]
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 Figure 2: Total system block diagram for the Example.

The plant (Eq. 7) is illustrated at top, the controller

at bottom.
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" Fig. 3. Computer simulation giving the unit-
step response of the example.

From Equation (13) the "energy" of the error system is decreased more rapidly if

n is large. However, n is difficult to compute, but a related parameter

- g?(A Tp+pa ) e el Qe
o o’ = = =

" - ol e (14)
V(o) e Pe

is always less than or equal to n. Also n, is much easier to maximize.

It is clear that the rate of convergence depends only on the matrix P since
Ao is fixed by the design specificationms.

A conservative estimate of the convergence time is then given in terms of the

characteristic values of the matrices P and Q:



w o« n « The smallest eigenvalue of Q _ (15)
"2 A5 = The largest eigenvalue of P (15)

In most cases this value of a as a lower bound to the convergence time n is too

conservative to be of practical use.

Summary:

This monograph has presented a method which, although not original, is an
unusual utilization of Liapunov's Second Method in a general approach to the
controller design problem. As such, this paper illustrates the power and versa-
tillity of the Second Method which might not be obvious to those only moderately
familiar with the concept. On the other hand, a close study of this material
indicates two drawbacks to the technique:

1) The most important drawback is the need for all of the plant outputs to
generate the control signal. In higher-order systems these derivatives
cannot be generated due to noise.

2) In any practical situation it would be very difficult to determine the

rate of convergence to equilibrium in response to command signals.
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